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ABSTRACT 
 
A modal test of NASA’s Space Launch System (SLS) Core Stage is scheduled to occur prior to propulsion system verification 
testing at the Stennis Space Center B2 test stand.  A derrick crane with a 180-ft long boom, located at the top of the stand, will 
be used to suspend the Core Stage in order to achieve defined boundary conditions.  During this suspended modal test, it is 
expected that dynamic coupling will occur between the crane and the Core Stage.  Therefore, a separate modal test was 
performed on the B2 crane itself, in order to evaluate the varying dynamic characteristics and correlate math models of the 
crane.  Performing a modal test on such a massive structure was challenging and required creative test setup and procedures, 
including implementing both AC and DC accelerometers, and performing both classical hammer and operational modal 
analysis.  This paper describes the logistics required to perform this large-scale test, as well as details of the test setup, the 
modal test methods used, and an overview of the results. 
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INTRODUCTION  
 
The National Aeronautics and Space Administration (NASA) is currently producing flight hardware for the new Space Launch 
System (SLS).  The SLS is a heavy launch vehicle capable of launching massive payloads to deep space destinations including 
Earth’s moon, Mars, and beyond.  The first vehicle configuration will be capable of launching 77-tons of payload using a center 
Core Stage with four RS-25 rocket engines, supplemented with two Solid Rocket Boosters [1].  In order to certify the SLS for 
launch, a hot-fire test of the Flight Core Stage will take place at the B2 test stand located at NASA’s Stennis Space Center 
(SSC), in southwestern Mississippi.  The main derrick crane, located on top of the test stand, will be used to move and position 
the Core Stage for this test. 
 
Prior to Flight Core Stage testing, an experimental modal analysis test is scheduled to take place on the Core Stage while 
suspended from the B2 stand main derrick crane.  During this Core Stage modal test, the crane will dynamically couple with 
the test article. Therefore, a modal test was performed on the crane by itself—in a loaded and unloaded configuration—with 
the goal of providing modal data in the frequency bandwidth of 0 Hz to 20 Hz in order to evaluate the varying dynamic 
characteristics of the crane.  Increased confidence in the validity of the crane dynamic models will allow focus to remain on 
Core Stage model verification and correlation from data acquired during the Core Stage modal tests.  
 
Performing this challenging, experimental modal test on the B2 Stand Crane only (no Core Stage) is the focus of this paper, 
where both classical hammer impact data as well as operational response data was measured.  Instrumenting, exciting, and 
measuring modal data from such a large outdoor structure is discussed in detail, as well as lessons learned.  The results are only 
briefly discussed, as the data is still under analysis at NASA Marshall Space Flight Center (MSFC). 

https://ntrs.nasa.gov/search.jsp?R=20180002029 2018-07-23T13:34:22+00:00Z



B2 STAND MAIN DERRICK CRANE 
 
In addition to providing general lifting support for the Stennis Space Center B2 test stand, the main derrick crane is primarily 
responsible for unloading rockets from ground-level transportation and placing them into the stand for test firings, as will be 
performed during the SLS Flight Core Stage hot-firing test.  The crane, located on top of the 265-ft tall test stand, consists of a 
64-ft tall mast with a 180-ft long boom that is capable of lifting almost 400,000-lb when at an 80-degree boom angle.  The B2 
test stand and main derrick crane (painted red and white) are shown in Figure 1. 
 

  
Figure 1:  Stennis Space Center B2 Stand and Main Derrick Crane  

 
There were two additional structures of interest measured during the modal testing:  the crane hook block and water tank used 
to load to the crane.  While not appearing large in the previous figure, the crane hook block was of substantial size, measuring 
6.6-ft wide by 10.3-ft tall (from the top of the block to the bottom of the hook), with a pulley diameter of 3-ft.  The water tank, 
shown placed on the ground transportation pad in front of the crane, is periodically filled with water to proof-test the crane and 
measured 18-ft square by 20-ft tall and weighed 58,000-lb when empty.  
 
 
ACCELEROMETER INSTRUMENTATION 
 
To capture the desired modes of interest below 20 Hz, a pre-test analysis was performed and identified 35 measurement 
locations on the B2 stand main derrick crane.  The first 34 locations are shown and labeled in Figure 2, which displays the 
crane configured over the test stand cradle.  Not shown in the figure is Location 35, which was the located on the water tank.  
To capture all three axes, each location was instrumented with three accelerometers assembled in a tri-axial block, for a total 
of 105 accelerometers.  As will be discussed subsequently, the yellow locations in the figure designate DC accelerometers and 
the green locations designate AC accelerometers.   



 

 (a) 

 (b) 
 

Figure 2:  DC (yellow) and AC (green) Accelerometer Measurement Locations (a) Side View and (b) Top View   
To better capture the low-frequency response of the crane, seven locations were measured with 21 DC accelerometers 
assembled in tri-axial configurations—the locations were chosen to clearly define the first bending and torsion modes of the 
crane.  These accelerometers, PCB Model 3701M15, were selected as they are capable of measuring low frequencies down to 
0 Hz (nominal sensitivity of 1 V/g) and were powered with external signal conditioners that were adjusted prior to each test to 
remove any DC offset present in the output signal.  The remaining twenty-eight locations on the crane were measured with 84 
AC accelerometers assembled in tri-axial configurations.  These IEPE (Integrated Electronic Piezoelectric) Endevco Model 
46A16 accelerometers were capable of measuring down to 1 Hz (nominal sensitivity of 100 mV/g) and were powered with 
excitation current provided by the data acquisition hardware.  An example of DC and AC accelerometers mounted in tri-axial 
configurations as used for the crane modal test are shown in Figure 3.  
 
Applying the accelerometers to the crane required additional preparations and procedures due to exposure to the hostile summer 
Mississippi weather.  First, aluminum tape was placed at the measurement location to both protect the crane paint and provide 
a clean work surface.  Next, the aluminum tape was scuffed with 320 grit sand paper to provide good surface texture for 
adhesion.  Instant adhesive was then used to glue the tri-axial blocks with accelerometers to the aluminum tape.  And finally, 
the accelerometer/cable interface was sealed and weather-proofed by applying small squares of Tacky Tape, which was easy 
to apply (as well as remove) and proved to be resilient in the weather that occurred between the test setup in May and the modal 
test in July.  Additionally, in order for test personnel to access the measurement locations on the crane, safety harnesses and 
fall protection training were required and all equipment was tethered (such as hardhats, safety glass, and rolls of tape).   
   



  (a) (b) 
 

Figure 3:  Tri-Axial Accelerometer Blocks: (a) DC and (b) AC 
 
 
Following the logistically and mentally challenging crane instrumentation, as the boom and upper mast were hundreds of feet 
above the ground, the crane hook block and water tank were fairly easy to instrument.  The crane hook block was first lowered 
to the personnel walkway located on the 7th floor exterior rolling deck (left, white platform shown in Figure 1).  A tri-axial DC 
accelerometer block connected to 200-ft long accelerometer cables was then adhered near the center of the block pulley, as 
seen in Figure 4(a); strain-relief was provided by wrapping the cables around the hook and taping them to the block.  Once 
installed, the instrumented crane hook block was raised to approximately 28-ft below the end of the boom.  The water tank was 
easiest to instrument, as it was done with the tank lowered on the ground transportation pad with a tri-axial DC accelerometer 
block and 200-ft long accelerometer cables, adhered at bottom center of the water tank, as seen in Figure 4(b). 
 

 (a)  (b) 
 

Figure 4:  Instrumented (a) Crane Hook Block and (b) Water Tank  



IMPACT HAMMER INSTRUMENTATION 
 
Exciting a structure as large as the B2 stand crane for a classical hammer modal test required an impact hammer of significant 
size.  For this reason, a PCB Model 086D50 instrumented sledge hammer with a 12-lb head (nominal 1-mV/lbf sensitivity) was 
selected as the baseline hammer for this test.  This hammer was then modified to better focus the input force to the desired 
frequencies of 20 Hz and below by both increasing the softness of the hammer tip with 6.5-inch thick packing foam and 
increasing the mass of the hammer with a 35.25-lb weight.  The resulting 47.25-lb hammer is shown resting on the crane cradle 
platform in Figure 5, with the square packing foam covered in yellow tape and the cylindrical mass secured with a yellow-
taped bolt;  the red rope shown was used as a safety tether and was tied to the cradle while the hammer was on the platform.   
 

  
Figure 5:  Modified Modal Impact Hammer 

 
  
INSTRUMENTATION CABLING 
 
Connecting all 99 accelerometers (33 locations) located on the crane to the signal conditioners and data acquisition system 
located on the 19th floor of the test stand was achieved with 200-ft long lengths of accelerometer connector-to-BNC cable.  The 
length was sufficient for all measurement locations, even with extra slack given to the boom and mast accelerometer cables to 
allow for boom elevation and rotation without any pulling or damaging the cables.  Where possible, the cables were bundled 
and secured along their lengths to the crane structure with cable ties and tape.   
 
Keeping this amount of cable organized—about 3.75 miles in total length—was accomplished by originating each cable from 
an individual spool stored in an aluminum frame assembly, as seen in Figure 6.  The assembly allowed for easy transportation 
to, from, and around the test site in a van or on a wagon, and guaranteed few tangles when pulling out the accelerometer-end 
of the cable for instrumentation on the crane.  On the outside of each spool was the BNC connector, which was directly 
connected to the signal conditioners and main data acquisition chassis, also shown in the figure.   
 
The crane hook block and water tank accelerometer cables were configured differently from the crane cables due to their far 
distance from the 19th floor.  For the impact hammer test, with the crane in the cradle position, the 200-ft long cables from the 
crane hook block accelerometers were long enough to connect to a DC signal conditioner and modular data acquisition card 
located on the 7th floor exterior rolling deck walkway.  This hardware was powered with a long extension cord running to the 
interior of the B2 stand.  For the operational response test, when the crane lifted the water tank over the transportation pad, 
there was enough length of both the crane hook block and water tank accelerometer cables to reach the DC signal conditioner 
and modular data acquisition card, which were moved to the 2nd floor of the B2 stand. 



 

  
Figure 6:  Accelerometer Cable Spools, DC Signal Conditioners, and Data Acquisition Chassis  

 
It must be emphasized that maintaining a neat and organized cable routing scheme during modal testing was crucial for many 
reasons. Primarily, if a sensor issue was encountered during a test, it was much easier and less time consuming to track down 
the source of the problem while minimizing the potential to damage other sensors. Thoughtful cable routing also minimized 
cable damage in high traffic areas around the test article through the use of extra cable protection (cable trays, wire tied bundle, 
plastic covers, etc.) and managed personnel routes.  Finally, well-planned cable management also facilitated in a much quicker 
test tear-down, which is particularly important for test programs with tight schedules, where tear-down time is often neglected 
from the schedule. 
 
 
DATA ACQUISITION SYSTEM  
 
The data acquisition system (DAQ) used to perform the modal test of the B2 stand crane consisted of Bruel and Kjaer (B&K) 
Pulse Reflex acquisition software running B&K LAN-XI hardware.  The 12-channel hardware cards were modular and capable 
of operating apart from the main 11-card data acquisition chassis through the use of Ethernet cables connected to the DAQ 
computer via a network hub.  The modular card was necessary for the crane hook block and water tank accelerometers, as to 
avoid using two separate data acquisition systems or running more than 500-ft of instrumentation cable per accelerometer, 
which would have been expensive and more complex (1 Ethernet vs 6 accelerometer cables).  Additionally, the data was 
acquired with the same time clock using Procession Time Protocol (PTP), avoiding any asynchronous (out of phase) 
measurements between the DAQ hardware. 
 
Connecting both the main data acquisition chassis and modular data acquisition card to the DAQ computer on the 2nd floor was 
accomplished through the use of two 300-ft long Cat6 Ethernet cables.  For the main data acquisition chassis located on the 
19th floor, an instrumentation shaft running the height of the B2 stand provided access to run an Ethernet cable to the data 
acquisition computer.  For the modular data acquisition card located on the 7th floor exterior walkway when performing impact 
testing, an Ethernet cable was run outside along the exterior walkways and stairs of the B2 stand to the DAQ computer.  The 
modular card was moved to the 2nd floor DAQ computer location for the operational response testing, and connected with a 
much shorter Ethernet cable.  A diagram illustrating the overall instrumentation and cabling setup used for the B2 stand modal 
test is shown in Figure 7.   



  
Figure 7:  Instrumentation and Data Acquisition (DAQ) Cabling Diagram  

 
An important capability that the data acquisition system provided, and must be emphasized, was the ability to measure spectral 
data and time history data simultaneously.  This was very valuable for the B2 stand crane test, as only two days were available 
to perform the modal and operational response testing.  With pre-determined digital signal processing (DSP) parameters, the 
spectral data was viewed and curve fit to determine if the desired modes and frequencies were captured very soon after testing.  
However, having the recorded time history data allowed for further post-processing at a later time with different DSP 
parameters to remove damaged accelerometer data, clean up accelerometer signals, and calculate more accurate FRFs and 
therefore extract more accurate modal parameters. 
 
 
TEST PROCEDURE 
 
For the classic modal hammer impact test, the B2 stand crane was positioned with the boom raised about 6-inches above the 
cradle platform (where the boom rests when not in operation).  Standing on the cradle platform, test personnel used the modified 
modal hammer to excite the boom at Location 17 (see Figure 2) in the lateral and vertical directions, as seen in Figure 8(a).  
After viewing data from some pre-test impacts, the DSP parameters used were an analysis frequency of 100 Hz (sample rate = 
256 Hz) with 16 second record length, resulting in 1600 spectral lines with a frequency resolution of 0.0625 Hz.  With these 
settings, each direction was impacted ten times with one-minute duration between each impact, with a force/exponential 
window applied to the data.  The one-minute duration was to allow the crane response to sufficiently die down prior to the next 
impact, and provide extra flexibility in post-processing the time data.  The softness of the hammer tip and the weight of the 
hammer resulted in good rebounds of the hammer and prevented any double-hits. 
 
For the operational response testing, the crane was moved over the transportation pad to a position similar to that of the 
scheduled SLS Core Stage modal test.  With the boom at 72.1-degrees, the crane was attached to the water tank and filled to 
approximately 281,000-lb to simulate the Core Stage weight.  Once filled, time history data was recorded with the same DSP 
parameters as with the impact hammer tests (100 Hz analysis frequency), while the crane moved the tank to five different 
positions horizontally in 5-degree increments, then vertically in 1-foot increments, with one minute in between positions.  The 
start/stop motion of the crane provided a pulse-like input into the structure for operational modal analysis.  Once complete, the 
tests were repeated with a reduced water level (weight of 230,000-lb) as well as with an empty tank.  There was enough slack 
in the crane hook block and water tank accelerometer cables to allow this test to be performed at about 25-ft above the concrete 
pad as seen in Figure 8(b). 



 (a)  (b) 
 

Figure 8:  Modal Testing (a) Classic Hammer and (b) Operational Response  
 
IMPACT HAMMER MODAL RESULTS 
 
With the modified impact hammer, the measured time histories showed that approximately 500-lbf of peak force input was 
applied to the B2 stand crane boom in the lateral (Y+) and vertical (Z+) directions.  The resulting, averaged auto-spectrum for 
the force at each location is shown up to the 100 Hz analysis frequency in Figure 9.  The plot illustrates that the modification 
of the hammer was successful, as the force spectrum magnitude can be seen to decrease by a factor of 100 (-20 dB) by 20 Hz—
this desired 20 dB drop is common practice in performing impact hammer testing [2].  Even though the impact hammer data 
was measured up to 100 Hz, and the desired test frequency was up to 20 Hz, the remainder of the results plots will be shown 
from 0 Hz to 10 Hz, to better illustrate modes present in the crane below 10 Hz. 
 

 
Figure 9:  Impact Hammer Auto-Spectrum Results  



For the sake of brevity, only the averaged drive point Frequency Response Functions (FRFs) and coherence measured at the 
test site are shown from 0 Hz to 10 Hz in Figure 10.  When viewing the plots, it was concluded that the first realized mode of 
the B2 stand crane occurred at approximately 1 Hz, due to the FRF peak and the corresponding high coherence value (0.9).  
Any peaks that occurred in the FRF below this frequency coincided with low coherence values (less than 0.5), which indicated 
incoherent response.  Alternately, peaks above this frequency, such as the small peak at 1.9 Hz, correspond with high coherence 
values (close to 1), indicating real excited modes.  It was also noticeable in the plot that there are a few bands of closely-spaced 
modes such as those at 2.15 Hz and 2.21 Hz, and 3.43 Hz and 3.50 Hz. 
 

 
Figure 10:  Drive Point Frequency Response Functions and Coherence  

 
The FRFs and coherence data processed in real-time during the impact tests were used immediately after the test to estimate 
modal parameters to determine if all desired modes were captured.  The time histories and power spectral densities were viewed 
as well to assess data quality.  Once back at NASA MSFC, a more thorough study and modal analysis was performed on the 
time history data.  It was discovered that some of the accelerometer measurements indicated a bad accelerometer (such as at 
Location 21) and that the DC accelerometers exhibited low frequency drift, that when combined with exponential windows, 
led to incorrect FRF calculations.  After removing the bad accelerometer data and applying band pass filters (0.5 Hz to 25 Hz) 
and new windows to the time history data, modal frequencies, mode shapes, and damping were extracted from the data more 
accurately than could be done at the test site. 
 
 



Again for the sake of brevity, not all mode shapes extracted from the modal impact hammer testing will be shown.  However, 
a sample of modes are plotted in Figure 11, corresponding to the large peaks shown in the FRF and coherence plot of Figure 
10.  These mode shapes include the first vertical bending of the boom with the in-phase first bending of the mast at 0.98 Hz, 
the first vertical bending of the boom with the out-of-phase first bending of the mast at 2.15 Hz, the very closely-spaced first 
lateral bending of the boom at 2.21 Hz (mast in-phase), and the first torsion mode of the boom at 3.43 Hz.   
 

 (a) Mode 1: 0.98 Hz 
 

 (b) Mode 3: 2.15 Hz 

 (c) Mode 4: 2.21 Hz  (d) Mode 6: 3.43 Hz 
 

Figure 11:  B2 Stand Crane Mode Shapes from Impact Hammer Testing  
 
OPERATIONAL RESPONSE RESULTS 
 
An example of operational response time history data, measured at Location 22 in the vertical axis, is shown in Figure 12(a).  
This was acquired while the crane lifted a full bucket (281,000-lb) vertically five times in one foot increments with at least 60 
seconds between lifts.  This data illustrates how not-textbook-like measurements can be in the field.  In this case very low 
frequency content caused by accelerometer drift can be seen.  For these tests, the data was recorded with the approach that as 
long as the accelerometers did not overload, the data was considered valid and could be post-processed. 
 
 
 



After all testing was complete, the time history data was post-processed with a band pass filter set from 0.5 Hz to 20 Hz to 
remove the accelerometer drift and focus on the frequency band of interest; the data was truncated as well to simplify analysis.  
As can be seen in the post-processed time history data in Figure 12(b), the impulses resulting from hard-stopping the crane lift 
are evident and measure maximum accelerations of approximately 0.02-g.  Accelerometers located on the feet of the mast 
measured even lower acceleration values, at approximately 0.003-g.   Even with these low magnitude values, the transient 
response data following impulse loading was above the noise floor of the measurement system, and operational modal analysis 
can be applied to determine operational modal deflection shapes.  This work is currently ongoing at NASA MSFC. 
 
 

          (a)  

             (b) 
 

Figure 12:  Vertical Bucket Lift Operational Response Measurement (a) As-Measured and (b) Post-Processed  
 
LESSONS LEARNED 
 
The most valuable lesson learned from the B2 stand test is the importance in measuring time histories when running 
experimental modal tests out in the field.  In a lab, there may be time to collect perfect FRF data before breaking down the test 
setup.  However, when obligated to a tight test schedule, having quality and sufficiently sampled time history data allows for 
fastidious post-processing at a later date (hopefully in an air conditioned room), to apply different filtering, windowing, or 
longer time frames to calculate better FRFs and resulting modal parameters.   
 
Communication is integral to running a proper modal test as well, particularly when impact hammer personnel or crane 
operators were located hundreds of feet away from the DAQ computer operator.  Initially the plan was to use SSC two-way 
radios, but the concrete bunker where the DAQ computer was located prevented radio transmission.  Therefore, someone had 
to stand with a radio just outside the test stand/DAQ room door and relay information to the DAQ operator.  Cellular phones 
were eventually used as they worked better, provided the phone used by the DAQ operator had the ability to use the B2 stand 
Wi-Fi signal to relay phone calls.  This emphasizes that no matter how well things are planned, flexibility is usually required 
to run off-site tests. 
 



In regards to the performing a better test in the future, such as with the scheduled Core Stage modal test, a lesson learned was 
to allow longer durations between hammer impacts of the boom, to allow for time windows of 64 seconds, resulting in finer 
frequency resolution of the FRF calculations.  This was discovered during post-processing of the time history data, where the 
time window was increased from 16 seconds to 32 seconds to better resolve the closely spaced modes in the FRFs.  An 
additional lesson learned from the modal identification process was that the crane cables may have contributed to some 
unidentifiable modes in the data.  If there were a way to measure the crane cable responses (such as with a Laser Doppler 
Vibrometer) in future tests, this may make modes more easily identified, which is under consideration for future testing. 
 
Finally, when modal test data is to be used in modal correlation as with the B2 stand crane, it is very important to work with 
the analysts conducting the correlation efforts.  During the instrumentation process, it is valuable to have the analyst present to 
assure that the actual location of sensors is suitable to provide proper comparisons between analysis and test, as well as assess 
excitation locations to assure proper modal response for the sensors chosen.  Additionally, when creating the modal test 
geometry, the analysts can assist in designating a common global coordinate system to be used when transforming modal 
displacements from the modal coordinate system to the analysis coordinate system.  This was particularly useful with the B2 
crane, where geometric complexities required many local coordinate systems to keep track of the modal responses—the test 
results were easily transformed into the global coordinate system and given to the analysis for efficient model validation. 
 
 
CONCLUSIONS 
 
A large-scale modal test was performed by the NASA Marshall Space Flight Center Structural Dynamics Test Branch on the 
B2 Stand crane at NASA’s Stennis Space Center in preparation of the upcoming SLS Flight Core Stage modal test.  Due to 
concern that the dynamics of the crane would couple with the Core Stage, this crane-only modal test was performed in order 
to provide data for crane model validation.  Both classic impact hammer and operational response modal testing was performed 
on the instrumented B2 stand crane in an unloaded and loaded configuration.  Focusing on frequencies of interest from 0 Hz to 
20 Hz, frequency and time history data were successfully measured and analyzed.  After post-processing the recorded time 
histories with band-pass filtering, windowing, and extending the analysis time windows, modal analysis was performed on the 
resulting data.  Modal frequencies, damping, and mode shapes were extracted from the impact hammer data; the operational 
response data is still under analysis at NASA MSFC. 
 
Performing a modal test on such a large, outdoor structure was a challenge and some of the solutions are worth summarizing.  
Weatherproofing the accelerometer/cable interface was done with squares of tacky tape, which kept water out of the connection 
as well as kept the cable tightened to the accelerometer.  Each accelerometer cable was stored on a spool, which kept the cables 
relatively tangle free; the spools were kept together on an aluminum assembly which made cable transportation easy and helped 
tremendously in identifying each accelerometer/cable when issues arose.  Finally, keeping the data acquisition hardware near 
the test item helped reduce the amount of instrumentation cable; only a single 300-ft Ethernet cable was required to connect 
each DAQ hardware to the DAQ computer, reducing the complexity of the setup tremendously. 
 
The presented modal test on the B2 Stand crane was successful and valuable in numerous ways.  In addition to providing 
modelers with valuable real-world data, there were lessons learned from performing the actual test as well as from performing 
the modal analysis on the time history and FRF data.   This experience has greatly prepared NASA Marshall Space Flight 
Center for the upcoming Flight Core Stage modal test as well as for future modal tests required to provide a successful launch 
of the new Space Launch System.   
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